Int. J. Heat Mass Transfer.  Vol. 17, pp. 861-867.

Pergamon Press 1974, Printed in Great Britain

ON THE ESTIMATION OF THERMOPHYSICAL PROPERTIES IN
NONLINEAR HEAT-CONDUCTION PROBLEMS

C. BoNACINA* G. CoMmINg* A. Fasanot and M. PRiIMICERIOT

(Received 20 August 1973 and in revised form 3 December 1973)

Abstract—The influence of thermophysical property variations on the resulting temperature fields is
investigated with reference to quasilinear heat-conduction problems. Both theoretical and experimental
evidence is produced to show that errors in the calculation of temperature distributions, brought about
by an inaccurate estimate of thermal properties, are small if approximate heat capacities, even exhibiting
large local differences with respect to the actual ones in a small range of temperatures, retain enthalpy
variations and if the integral across the whole working temperature interval of the absolute value of the
difference between approximate and actual thermal conductivities is small. Then the practical relevance
of these results is pointed out with reference to freezing and thawing processes of biological materials
whose thermal coefficients vary sharply over the phase change zone, where only mean values of
thermophysical properties can be easily measured.

NOMENCLATURE
A, measure of the region (defined in the text)

[m.s];
¢, specific heat [J/kg.K];
C, volumetric heat capacity [J/m*°K];

e, temperature error [K];
f,9. surface temperatures [°C];
h, initial temperature distribution [°CT;

k, thermal conductivity [W/mXK];
R, slab thickness [m];

t, temperature [°C];
t.p.,  thermophysical properties;
X, position coordinate [m].

Greek letters

Ay,  quantity defined by equation (13} [J/m*};

AZ,  quantity defined by equation (15) [J/m®];

At,  quantity defined by equation (17) [K]};

Ax,  quantity defined by equation (16) [W/m];

A enthalpy difference per unit volume across
the phase change interval [J/m®];

A, quantity defined by equation (14) [J/m?];

T, time [s5].

Subscripts

Lu, lower and upper limit to the phase change

interval;
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minimum;
maximum;
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INTRODUCTION

TEMPERATURE dependence of physical properties must
be taken into account in many heat-conduction prob-
lems associated with thermal design and/or process
control of industrial and scientific applications such as
freezing and thawing of foodstuffs [3], high-rate heat-
transfer processes [11] and heat transfer at cryogenic
temperatures [ 7]. The resulting nonlinear heat-conduc-
tion equations can be easily dealt with by numerical
methods whenever the values of thermophysical prop-
erties in the temperature range under consideration
are available {4]. Unfortunately, compared to the in-
creasing need of this kind of information, very few
source data can be found in literature. Perhaps this
trend is justified by the great difficulties involved in
the determination of heat capacity and thermal con-
ductivity vs. temperature curves in the phase change
zone or in correspondence with extreme temperature
levels. However, for biological substances in particular,
the lack of knowledge is so serious that no less than
three different international projects, aiming at re-
trieving and assembling data on a number of thermo-
physical properties, have been launched in the last four
years [1, 10, 13].

In this paper, using the concept of “weak solutions”,
it is shown that the computation of thermal fields is
rather insensitive to the shape of heat capacity and
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thermal conductivity vs. temperature curves in the
phase change zone provided that enthalpy variations
are retained and that the integral across the whole
working temperature interval of the absolute value of
the difference between approximate and actual thermal
conductivities is small. Experiments with several bio-
logical materials performed in the phase-change zone
where thermophysical properties vary sharply over a
small temperature range, have confirmed the above
mentioned theoretical results. As it is outlined in the
following sections, this should lead to a considerable
simplification of apparatuses and techniques connected
with the determination of thermophysical properties
needed for the prediction of temperature fields.

FORMULATION OF THE PROBLEM

For the sake of simplicity reference is made to a
one-dimensional nonlinear heat-conduction problem,
while boundary conditions of the first kind are chosen
because of experimental convenience.

Denoting by ty{x,7} and t,{x,t) the temperature
distributions in the domain Q: 0 < x< R; 0< g6,
corresponding to the same initial and boundary con-
ditions and to thermal coefficients Cy{t;), k(¢1) and
C,ft2), ka{ts) respectively, the following heat-conduc-
tion problems can be considered:

Cit) 5 = %[k;m) %] L inQ; (1)
Lx,0)=h(x), O0<x<R; (2)
t:;(0,7) = fl1), 0<tg 8, 3)
R =gr), O<1£0; 4

where: i = 1,2 and f, g, h, C;, k; are assigned functions
of their respective arguments.

If Ci(t) and k() are referred to as exact deter-
minations of heat capacity and thermal conductivity
vs. temperature curves, while C,(f) and k,(t) indicate
approximate estimates of the same functions, the
difference:

elx, ) = ta(x, 1)~ ;(x, 7) (B3]

represents the “temperature error” which will be
analysed in the following sections.

ERROR ANALYSIS

The aim of this section is to estimate e{x, 1) in
order to investigate the effect of thermophysical prop-
erty variations upon temperature distributions.

In so far as classical solutions of equations (1)-(4)
are considered, self suggesting ways of tackling the
problem are the application of the maximum principle
or the use of bounds on Green’s function to evaluate

the upper limit to the solution of the parabolic problem
solved by e(x, 7). Unfortunately, by employing these
methods, temperature errors can only be shown to be
proportional to the maximum differences between cor-
responding exact and approximate values of C, and
Cy, k, and k; and even between dk,/dr and dk,/dt.
Moreover, proportionality factors depend critically on
quantities, such as the maximum of C{t), which can
be expected to be very large in many practical situations
[8]- Therefore this information, while interesting from
a theoretical point of view, is not of great help in
practice. Thus a different approach, based on a
generalized formulation of the heat-conduction prob-
lem and on the definition of “weak solutions”, has
been considered here since this procedure provides
very effective analytical tools and vields most significant
results which are of immediate use for practical appli-
cations. In fact, an uniqueness theorem ensures that a
weak solution coincides with the classical one whenever
the latter exists.*

For the sake of concreteness, reference is made
throughout this paper to biological substances which
exhibit sharp variations of thermophysical properties
over the phase change zone [3]. but it would not have
been difficult to take into consideration other quasi-
linear heat-conduction problems.

In order to state the main results concisely it is
convenient to introduce the following notations. First
suppose that f, g and h are bounded, piecewise con-
tinuous functions, so that:

t,, = min[inf h{x), inf f{z), infg(x}] ; (6)
ty = Max[sup h(x), sup (1), supgi{)]. (7

Next assume that C; and k; are positive bounded,
piecewise continuous functions and set:

C,. = min[inf Cy(1), inf C2(8}] > 0; (8)

Cyr = Max[sup Cy(8), sup C,(0)] ; 9

k,, = min[infk,(z), infk,(0)] > 0; {10
and

kp = Max[supk (1), supk,(t)]. (1

Let then ¢, and t, represent respectively the lower
and the upper bound to the interval where thermal
properties undergo the sharpest variations; if, in addi-
tion, it is assumed, according to the physical situations
to be dealt with, that the inequality:

by < 1 < by <ty (12)
*This theorem will be a consequence of the stability
result stated below [see (19)].
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holds good, the quantities:
4

[ ,
Ay= MaXU 1Ca() — Gy (1)) dt,

lm

| 1e0-ciond: @3
t
[
A= Ci(1 dt, i=1,2; (14)
fo
AA = Ay —iy] (15)
t
Ax -j |k, () — ky(2)) dt (16)
tm
and:
At =ty —t (17

P T

have a well defined physical meaning The same is true
for A which is the measure of the region of the plane
(x,7) where approximate and actual thermophysical
properties differ significantly:

By means of techniques which are similar, in some
aspects, to those of [8], the following inequality can
be shown to hold true:*

DAY, AL, Ak, A;
At, 21, A2, Gy ks kg R, 6)

le(x, L i <
(19)

where @ ‘s a known function of its arguments which
tends to zero when Ay, A4, Ax and A all tend to zero.
The quantities Ay, A4, Ak can be determined a priori
as errors in the estimation of thermophysical properties.
The measure A instead can be evaluated only
a posteriori once t,(x, t) has been computed, since it
depends also on the actual freezing or thawing pro-
cesses followed. While at this point it can be said solely
that an upper bound for A4 is the measure of the
region Q;, where:

< thx, 1)< t,, (20)
much numerical evidence, in addition to the examples
of applications reported here, might be produced to
suggest that this estimate is rather conservative. More-
over, temperature gradients are usually quite large in
practical processes, so that the influence of 4 on tem-
perature errors can be expected to be negligible in most
cases of technical interest.

Another noteworthy feature of formula (19) is that
the function ® does not retain any dependence on Gy
nor on the shape of the approximate heat capacity
vs. temperature curve in the phase change zone.

*The analytical details of the proof, however, are con-
siderably different from those reported in [8]. A complete
analysis of the present problem has been thus writtenin order
to save the interested readers unnecessary efforts {5].
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ESTIMATION OF THERMOPHYSICAL PROPERTIES

In most biological substances water is the major
component. Thus when these materials are cooled
below 0°C ice formation occurs, starting at'a tempera-
ture t, usually between —1 and —3°C—the initial
freezing point—which depends on the molar concen-
tration of the soluble cell components [9]. As the
temperature is progressively reduced, more and more
water is turned into ice and the latent heat of ice
formation adds to the sensible heat involved in cooling
both ice and the unfrozen part. This leads to large
variations in heat capacities, while thermal conduc-
tivities too change considerably, mainly because the
thermal conductivity coefficient of ice is four times
greater than that of water [3,9]. For most biological
materials the largest part of the {reezing process takes
place in a temperature interval of 4-8°K below the
initial freezing point, but only at temperatures ranging
from —20 to —40°C and even less there is no more
measurable change with temperature in the amount of
ice present and the remaining water can be considered
as non-freezable [9]. However, for practical purposes,
a lower limit #; to the phase-change interval can be
(.OI]VCHICI]U)’ UCI]HCO (0 ¢} lﬂC DaSIS OI d rdllO OI 1Ce o
residual freezable water content of, say, about 90 per
cent, thus identifying the phase change zone with the
zone of maximum crystallization. This choice, in addi-

tion to providing an easily applicable criterion, allows
all the same, as it will be seen later, to nnnrn\nmatf-

=4INe, as 1 De eCh 1aler, 1o roximalc

the actual C(t) and k,(¢) curves below ¢, by means of
constant average values.

Therefore, according to the above reported con-
siderations and to the results obtained in the previous
section, only the following source data are really needed
for the approximate computation of thermal fields in
biological substances undergoing phase changes:

1. The values of heat capacities and thermal con-
ductivities outside the phase change interval;

2. Theenthalpy variations 4 across the same interval.

Once these data are known and reasonable estimates
have been made of the values of ¢; and t,, the k,(?)
curve can be completed by means of a simple linear
interpolation between ¢, and #, while any arbitrary
function will do for C,(t) in the same range, provided
that enthalpy changes are retained. A triangular curve
has been used in this research because of its simplicity
and likeness to the actual curve but, when tested, also
different shapes, like for example rectangular and bell
shaped functions, have proved to be almost equally
satisfactory choices.

Obviously, accurate values of ¢, and ¢, or the exact
location and the value of the maximum of C{f) can
be used if available. However, several numerical experi-
ments confirm that only the values of the thermal
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properties listed at points 1 and 2 have a critical
influence on the computation of freezing and thawing
times.

As a consequence it can be deduced that only as
few as four local measurements, i.e. thermal conduc-
tivities and heat capacities above and below the phase
change interval, and a calorimetric determination of
the enthalpy variation across the same interval are
strictly requested to compute thermal fields in most
materials dealt with in food technology, bio-engineering
and bio-medicine.

RESULTS

When thermophysical properties change with vary-
ing temperatures, no analytical solutions of the result-
ing nonlinear heat-conduction equations are available.
Instead finite difference techniques can be used to
deal with such problems [4] but the accuracy of the
solutions thus obtained can only be evaluated experi-
mentally.

Therefore, several heating and cooling tests have
been carried out on samples of different biological
materials having a circular cross-section and thermally
insulated at the lateral surface in order to prevent
radial heat conduction. Care has also been taken to
ensure uniform temperatures at the ends, so that one-
dimensional thermal fields are believed to have been
realized in the axial region of the specimens. The
experimental apparatus and procedures used are
described in detail in [5].

The centre and the end surface temperatures of the
samples have been recorded during each test and the
centre temperatures have been assumed as t;(x, ).
Then, with reference to the known initial and boundary
conditions and to the sample thicknesses, temperature—
time curves have been computed using approximate

and, when available, experimentally determined-values
of the thermophysical properties.

Experimental values of density have been used in all
the computations since density can always be accu-
rately measured at room temperatures, while the
volume increase as a result of ice formation is about
6 per cent for most biological materials [9].

The numerical method used in the calculations has
been discussed elsewhere [4] and will not be treated
again here.

Only homogeneous and commercially available pro-
ducts have been chosen for the experiments, in order
not to introduce difficulties connected with handling
and preparation of most biological materials. The first
substance considered has been “Tylose”, a water and
methylcellulose (77 per cent and 23 per cent in weight)
mixture whose thermal properties are about the same
as those of lean beef [15]. Thermal conductivity and
specific heat of “Tylose”, which are plotted as unbroken
lines in Fig. 1, are well known and, therefore, allow a
comparison with the results obtained using approxi-
mate data. The approximations of the experimental
curves represented as dotted lines in Fig. 1 follow the
fundamental rules previousty reported and have proved
to be satisfactory. However, different locations of the
peak of heat capacity as well as different values of
the width of the phase change interval have also been
tried and have not led to significant changes in freezing
and thawing times.

Experimental and computed curves, typical of freez-
ing tests on “Tylose”, are plotted in Fig. 2. As it can
be seen, the agreement between measured and com-
puted valuesis about 1 per cent of the total temperature
change during the run if experimental values of thermal
parameters are employed, while it is of the order of
2 per cent if approximate values are used.

- Il { i

T T T

Experimental
Approximate -« =+

F1G. 1. Thermophysical properties of “Tylose”.
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F1G. 2. Freezing curve of a “Tylose” sample;
paoec = 1006kg/m3, R = 0-0425 m.

Results that are typical of thawing tests on “Tylose”
are reported in Fig. 3. The difference between experi-
mental and computed centre temperature-time curves
is of the order of 3 per cent, i.e. the temperature errors
are larger than in freezing runs. This worsening can
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F1G. 3. Thawing curve of a “Tylose” sample;
prorc = 1006 kg/m?, R = 0-0425m.

be explained by allowing for the fact that thermo-
physical property data at low temperatures are usually
less accurate than at high temperatures, as it is certainly
the case with approximate data, because of the un-
certainties involved in the determination of ,.

Table 1
Thermal
Heat capacity conductivity Latent heat
Food (J/kg.K) (W/m.K) Density of phase t HCy) t,
product t>1t, t<y t>t, t<y (kg/m?) change (J/kg) (W@ °O (°C)
Hamburger 3100 2100 043 12 990 199000 —65 -30 —-1-0
Mashed
potatoes 3517 1842 0-498 2-003 1000 267955 ~7:0 -3-0 -10
Table 2
t(°C) Hamburger Mashed potatoes
Surface Centre Surface Centre
T x1073(s) Measured Measured Computed Measured Measured Computed

0 19-3 193 19-3 20-1 20-1 201

0-24 10-1 18-8 19-3 102 19-8 20-0

072 —28 16:3 167 -19 16-1 169

1-20 -79 110 11-0 -53 10-0 109

1-68 —-12:2 54 53 —86 4.9 53

2:16 —152 0-8 0-7 —114 1-0 08

2-64 -17:5 -21 -10 —-138 -05 -13

312 —19-7 —-24 ~-12 —159 —16 —18

3-60 —216 —-37 -18 —181 -39 -26

4-08 —-227 -95 —-97 -203 —84 —42

4:56 —258 -19-7 —20-8 —-248 —200 —217

504 —-29-5 -269 —260 —29-9 ~269 —-275

5-52 -332 -311 —301 —32:8 -316 -316

6-00 —352 -336 —333 —353 —342 —-343

6-48 -371 -362 —355 —372 —-368 —364

HMT Vol. 17. No. 8—E
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Hamburger paste and mashed potatoes are the other
substances used in the experiments. The available
information on these materials is by no means com-
plete. Thus, for the hamburger paste, a weighted mean
has been utilized between data for lean beef [2, 12, 14]
and those for fat [9], the fat content being about
15 per cent. For mashed potatoes instead, the formulae
suggested in [2] for the evaluation of specific heat,
thermal conductivity and latent heat when only the
water percentage is known have been used, the water
content being about 80 per cent in this case.

In Table 2 the temperature values determined experi-
mentally are compared with the results of computations
made on the basis of the approximate values of thermal
parameters obtained as previously outlined and re-
ported in Table 1.

The accuracy reached in all the runs using the
approximating technique proposed in this paper is
surprisingly good.

CONCLUSIONS

The approximating technique described in this paper
has enabled to compute temperature distributions in
biological materials when only as few as four local
thermophysical property values—heat capacities and
thermal conductivities above and below the phase
change interval—and the latent heat effect are known.

It has been shown that the method proposed here
has a sound theoretical basis and it leads, in the
calculations of thermal fields, to results which are well
within the limits of accuracy usually imposed for
thermal design.
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SUR L’ESTIMATION DES PROPRIETES THERMOPHYSIQUES
DANS LES PROBLEMES NON LINEAIRES DE CONDUCTION THERMIQUE

Résumé—On étudie Iinfluence des variations des propriétés thermophysiques sur les champs résultants
de température en considérant les problémes non linéaires de conduction thermique. Les calculs et les
expériences montrent que dans les distributions de température, les erreurs apportées par une estimation
inexacte des propriétés thermiques sont faibles si les chaleurs spécifiques approchées (méme pour des
différences locales grandes par rapport aux différences réelles dans un petit domaine de température),
respectent les variations d’enthalpie et si est petite I'intégrale, étendue a lintervalle de température
concerné, de la valeur absolue de la différence entre les conductivités approchée et réelle. L’application
pratique de ces résultats est faite au cas du gel ou du dégel des matériaux biologiques dont les coefficients
thermiques varient trés rapidement dans la zone de changement de phase, zone ou I'on ne peut mesurer
aisément que les valeurs moyennes des propriétés thermophysiques.

ZUR ABSCHATZUNG THERMOPHYSIKALISCHER EIGENSCHAFTEN
BEI NICHTLINEAREN WARMELEITPROBLEMEN

Zusammenfassung— Der EinfluB von verinderlichen Stoffwerten auf das Temperaturfeld wird fir quasi-
lineare Wirmeleitprobleme untersucht. Sowohl theoretisch als auch experimentell wird nachgewiesen, da}
die durch engenaue Schitzung der thermischen Eigenschaften entstehenden Fehler bei der Berechnung
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der Temperaturverteilung klein bleiben, wenn anndhernd richtig geschitzte, spezifische Wirmen, die
innerhalb eines kleinen Temperaturbereiches gegeniiber den tatsichlichen Werten grofic Abweichungen
aufweisen diirfen, eingesetzt, die Enthalpieinderungen niedrig gehalten und wenn das Integral des
absoluten Fehlers der Wirmeleitfahigkeit iiber den gesamten Bereich des maBgebenden Temperaturgefilles
klein bleibt. Die praktische Bedeutung dieser Ergebnisse fiir den Gefrier- und Auftauvorgang von
biologischen Substanzen wird erldutert. Deren thermische Parameter #ndern sich im Gebiet der
Phasenumwandlung stark, und nur Mittelwerte konnen hier leicht gemessen werden.

OB OLEHKE TENNO®U3INYECKUX XAPAKTEPUCTHK B HEJIUHEMHBIX
3AJAYAX TEIUIOITPOBOIHOCTU
Amnotamms — Viccenyercs BIMAHAE M3MEHEHHs TEIUIOGH3HYECKUX XapDAKTEPHCTHK Ha DE3yJNbTHDY-
IOIIAE TEMIIEPATYPHBIE HOJIA B IPHMEHEHHH K KBa3H/IMHENHBIM 3a/1a4aM TeruionposoanocTd. Teope-
THYECKH M IKCTIEPHMEHTAIBLHO TIOATBEPXKAAETCSH, YTO OIIMGKH NPH pacyeTe paclpene/eHns TeMIepa-
TYDBI, BBI3BAHHEBIE HETOYHOM OLIEHKON TEIIOBBIX XapaKTEePHCTUK, HE3HAYMTETLHEI, ECITH TIPHOITHXeH-
Hble 3HAYEHHUs TEIIOEMKOCTEH, daxe B ciaydae GONMBHIIMX HM3MEHEHHH JIOKAJIBHBIX 3HAMEHMH
OTHOCHTENLHO TOYHBIX 3HAYEHHH TEIIOEMKOCTH B HEGOJBILIOM AMaNa30OHEe TEMIIEPATYD, COXPAHSIIOT
H3MEHEHUR JHTANBINH, U €CITH HHTErpasl OT abCOMIOTHOTO 3HAYEHHS PA3HOCTH MEXIY IpHOIKeH-
HBIM ¥ TOYHBIM 3HaYCHHEM TEIUTONPOBOJHOCTH BO BCEH 06/IaCTH HCCIENYEMBIX TEMIIEPATYP HEBEIIHK.
VYxa3aHO IpaKkTHYeCKoe TIPHMEHEHHE THX PE3YJIbTAaTOB B OPHICKEHHH K IIPOLIECCAM 3aMEP3aHHs U
OTTAHBAHUA GHOIOTHYECKHX MaTEPHANOB, TEIVIOBEIE KO (HULMERTEI KOTOPHIX PE3KO H3MEHAIOTCA 34
30HOM $ha30BBIX pEBPAllIEHHA, TAE MOTYT GBITb JIErKO MOMYMEHBI TONBKO CPEAHHE 3HAYCHHS TEIUIO-
(hHu3HYECKHX CBOMCTB.
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