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ON THE ESTIMATION OF THERMOPHYS~~AL PROPERTIES IN 
NONLINEAR HEAT-CONDUCTION PROBLEMS 
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Abstract-The inftuence oi thermophysical property variations on the resulting temperature fields is 
investigated with reference to quasilinear heat-conduction problems. Both theoretical and experimental 
evidence is produced to show that errors in the calculation of temperature distributions, brought about 
by an inaccurate estimate of thermal properties, are small if approximate heat capacities, even exhibiting 
large local differences with respect to the actual ones in a small range of temperatures, retain enthalpy 
variations and if the integral across the whole working temperature interval of the absolute value of the 
difference between approximate and actual thermal conductivities is small. Then the practical relevance 
of these results is pointed out with reference to freezing and thawing processes of biological materials 
whose thermal coefficients vary sharply over the phase change zone, where only mean values of 

thcrmophysical properties can be easily measured. 

NOMENCLATURE 

measure of the region (defined in the text) 

[m.s]; 
specific heat [J/kg.K]; 
volumetric heat capacity [J/m”K]; 
temperature error [K]; 
surface temperatures [“Cl; 
initial temperature distribution rC]; 
thermal conductivity [W/mK]; 
slab thickness [ml; 
temperature [“Cl; 
thermophysical properties; 
position coordinate [ml. 

Greek letters 

AY, quantity defined by equation (13) [J/m”]; 

AA, quantity defined by equation (15) [J/m”]; 

At, quantity defined by equation (17) [K]; 
dtc, quantity defined by equation (16) [W/m]; 
A, enthalpy difference per unit volume across 

the phase change interval [J/m3]; 
li, quantity defined by equation (14) [J/m”]; 

5, time [s]. 

Subscripts 

1, u, lower and upper limit to the phase change 
interval; 
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m, 
M, 
1, 
2, 

minimum; 
maximum; 
exact ; 
approximate. 

INTRODUCTION 

TEMPERATUKE dependence of physical properties must 
be taken into account in many heat-conduction prob- 
lems associated with thermal design and/or process 
control of industrial and scientific applications such as 
freezing and thawing of foodstuffs [3], high-rate heat- 
transfer processes [l l] and heat transfer at cryogenic 
temperatures [7]. The resulting nonlinear heat-conduc- 
tion equations can be easily dealt with by numerical 
methods whenever the values of thermophysical prop- 
erties in the temperature range under consideration 
are available [4]. Unfortunately, compared to the in- 
creasing need of this kind of information, very few 
source data can be found in literature. Perhaps this 
trend is justified by the great difficulties involved in 
the determination of heat capacity and thermal con- 
ductivity vs. temperature curves in the phase change 
zone or in correspondence with extreme temperature 
levels. However, for biological substances in particular, 
the lack of knowledge is so serious that no less than 
three different international projects, aiming at re- 
trieving and assembling data on a number of thermo- 
physical properties, have been launched in the last four 
years El, 10, 131. 

In this paper, using the concept of “weak solutions”, 
it is shown that the computation of thermal fields is 
rather insensitive to the shape of heat capacity and 
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thermal conductivity vs. temperature curves in the 
phase change zone provided that enthalpy variations 
are retained and that the integral across the whole 
working temperature interval of the absolute value of 

the difference between approximate and actual thermal 
conductivities is small. Experiments with several bio- 

logical materials performed in the phase-change zone 
where thermophysical properties vary sharply over a 
small temperature range, have confirmed the above 
mentioned theoretical results. As it is outlined in the 

following sections, this should lead to a considerable 

simplification of apparatuses and techniques connected 
with the determination of thermophysical properties 
needed for the prediction of temperature fields. 

FORkKJLATiON OF THE PROBLEM 

For the sake of simplicity reference is made to a 

one-dimensional nonlinear heat-conduction problem, 
while boundary conditions of the first kind are chosen 
because of experimental convenience. 

Denoting by ti(x.r) and t&,~) the temperature 

distributions in the domain Q: 0 < x 6 R; 0 < z < 0, 
corresponding to the same initial and boundary con- 
ditions and to thermal coefficients Ci(tr), k,(t,) and 

C,(tJ, k2(t2) respectively, the following heat-conduc- 
tion problems can be considered : 

the upper limit to the solution of the parabolic problem 

solved by e(x. T). Unfortunately, by employing these 
methods, temperature errors can only be shown to be 
proportional to the maximum differences between cor- 

responding exact and approximate values of CZ and 
Ct, k2 and kl and even between d k,/dt and d k,/dt. 
Moreover, pro~rtionality factors depend critically on 
quantities, such as the maximum of C(r), which can 
be expected to be very large in many practical situations 
[S]. Therefore this information, while interesting from 

a theoretical point of view, is not of great help in 
practice. Thus a different approach. based on a 

generalized formulation of the heat-conduction prob- 

lem and on the definition of “weak solutions”. has 
been considered here since this procedure provides 
very effectiveanalytical tools and yields most significant 
results which are of immediate use for practical appli- 

cations. In fact, an uniqueness theorem ensures that a 
weak solution coincides with the classical one whenever 

the latter exists.* 

in Q; (1) 

t&c, 0) = h(x), O<x<R; (2) 

m 4 = m. O<z<fB; (3) 

ritR, ~5) = g(r)> o<z<0; (4) 

where: i = 1,2 and f, g, h, Ci. ki are assigned functions 

of their respective arguments. 
If C,(t) and k,(t) are referred to as exact deter- 

minations of heat capacity and thermal conductivity 

vs. temperature curves, while C,(t) and k,(t) indicate 
approximate estimates of the same functions, the 

difference: 

For the sake of concreteness, reference is made 
throughout this paper to biological substances which 

exhibit sharp variations of thermophysical properties 
over the phase change zone [3], but it would not have 
been difficult to take into consideration other quasi- 
linear heat-conduction problems. 

In order to state the main results concisely it is 
convenient to introduce the following notations. First 

suppose that ,f. g and h are bounded, piecewise con- 
tinuous functions, so that: 

t, = min[inf~(~), inffit), infg(7)f ; (6) 

tM = Max[suph(x), sup,f(s), supg(r)] . (7) 

Next assume that C, and ki are positive bounded, 

piecewise continuous functions and set: 

e(x, T) = tz(x, r) - t,(.*., r) (5) 

represents the “temperature error” which will be 

analysed in the following sections. 

and 

Cm = min[inf C,(t), inf C,(t)] > 0; (8) 

C,W = Max[sup C,(t). sup C,(r)] ; (9 

k, = min[inf~,(~), infk,(t)] > 0; (10) 

ERROR ANALYSIS 

k, = Max[supk,(t), supk,(t)]. (11) 

Let then tl and t, represent respectively the lower 
and the upper bound to the interval where thermal 
properties undergo the sharpest variations; if, in addi- 
tion, it is assumed, according to the physical situations 
to be dealt with, that the inequality: 

The aim of this section is to estimate ejx, T) in 
order to investigate the effect of thermophysical prop- 
erty variations upon temperature distributions. 

In so far as classical solutions of equations (i)-(4) 
are considered, self suggesting ways of tackling the 
problem are the application of the maximum principle 
or the use of bounds on Green’s function to evaluate result stated below [see (19)j 

t, < t, < t,, < t&f (12) 

~~~- --... 
*This theorem will be a consequence of the stability 
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holds good, the quantities: 

[s f, Ay = Max I&(t) - C,(t)1 dt> 
1. 

s hi 

I&(t) - G(t)ldt ; (13) 
f. 1 

s f” 

li = G(t) dt, i= 1.2; 
f, 

A1 = I&-&); 

t&f 
AK = 

s 
Ik,(t)- k,(t)1 dt; 

Gn 

(14) 

(15) 

(16) 

and : 

At = tM - t, (17) 

have a well defined physical meaning. The same is true 
for A which is the measure of the region of the plane 
(x, T) where approximate and actual thermophysical 

properties differ significantly: 

By means of techniques which are similar, in some 

aspects, to those of [8], the following inequality can 

be shown to hold true:* 

where @ ‘s a known function of its arguments which 
tends to zero when A?, A& AK and A all tend to zero. 

The quantities Ay, A/1, AX can be determined a priori 

as errors in the estimation of thermophysical properties. 
The measure A instead can be evaluated only 

a posteriori once tz(x, r) has been computed, since it 
depends also on the actual freezing or thawing pro- 
cesses followed. While at this point it can be said solely 

that an upper bound for A is the measure of the 
region Ill, where: 

much numerical evidence, in addition to the examples 
of applications reported here, might be produced to 

suggest that this estimate is rather conservative. More- 
over, temperature gradients are usually quite large in 
practical processes, so that the influence of A on tem- 
perature errors can be expected to be negligible in most 

cases of technical interest. 
Another noteworthy feature of formula (19) is that 

the function @ does not retain any dependence on C, 
nor on the shape of the approximate heat capacity 
vs. temperature curve in the phase change zone. 

*The analytical details of the proof, however, are con- 
siderably different from those reported in [S]. A complete 
analysis of the present problem has been thus written in order 
to save the interested readers unnecessary efforts [S]. 

ESTIMATION OF THERMOPHYSICAL PROPERTIES 

In most biological substances water is the major 

component. Thus when these materials are cooled 

below 0°C ice formation occurs, starting at.a tempera- 
ture t, usually between - 1 and -3”C--the initial 

freezing point-which depends on the molar concen- 
tration of the soluble cell components [9]. As the 
temperature is progressively reduced, more and more 
water is turned into ice and the latent heat of ice 
formation adds to the sensible heat involved in cooling 

both ice and the unfrozen part. This leads to large 
variations in heat capacities, while thermal conduc- 

tivities too change considerably, mainly because the 
thermal conductivity coefficient of ice is four times 

greater than that of water [3,9]. For most biological 
materials the largest part of the freezing process takes 

place in a temperature interval of 4-8°K below the 
initial freezing point. but only at temperatures ranging 

from -20 to -40°C and even less there is no more 

measurable change with temperature in the amount of 
ice present and the remaining water can be considered 

as non-freezable [9]. However, for practical purposes, 
a lower limit t, to the phase-change interval can be 

conveniently defined on the basis of a ratio of ice to 
residual freezable water content of, say, about 90 per 
cent, thus identifying the phase change zone with the 

zone of maximum crystallization. This choice, in addi- 
tion to providing an easily applicable criterion, allows 

all the same, as it will be seen later, to approximate 

the actual C,(t) and k,(t) curves below tl by means of 
constant average values. 

Therefore, according to the above reported con- 

siderations and to the results obtained in the previous 
section, only the following source data are really needed 
for the approximate computation of thermal fields in 
biological substances undergoing phase changes: 

1. The values of heat capacities and thermal con- 
ductivities outside the phase change interval; 

2. The enthalpy variations 1 across the same interval. 

Once these data are known and reasonable estimates 
have been made of the values of t, and t,, the k,(t) 

curve can be completed by means of a simple linear 
interpolation between t, and t, while any arbitrary 
function will do for C,(t) in the same range, provided 

that enthalpy changes are retained. A triangular curve 
has been used in this research because of its simplicity 
and likeness to the actual curve but, when tested, also 
different shapes, like for example rectangular and bell 
shaped functions, have proved to be almost equally 
satisfactory choices. 

Obviously, accurate values of t, and t, or the exact 
location and the value of the maximum of C(t) can 
be used if available. However, several numerical experi- 
ments confirm that only the values of the thermal 
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properties listed at points 1 and 2 have a critical 

influence on the computation of freezing and thawing 
times. 

As a consequence it can be deduced that only as 
few as four local measurements, i.e. thermal conduc- 

tivities and heat capacities above and below the phase 
change interval, and a calorimetric determination of 

the enthalpy variation across the same interval are 
strictly requested to compute thermal fields in most 
materials dealt with in food technology, bio-engineering 
and bio-medicine. 

RESULTS 

When thermophysical properties change with vary- 
ing temperatures, no analytical solutions of the result- 

ing nonlinear heat-conduction equations are available. 
Instead finite difference techniques can be used to 

deal with such problems [4] but the accuracy of the 

solutions thus obtained can only be evaluated experi- 
mentally. 

Therefore, several heating and cooling tests have 

been carried out on samples of different biological 

materials having a circular cross-section and thermally 
insulated at the lateral surface in order to prevent 
radial heat conduction. Care has also been taken to 

ensure uniform temperatures at the ends, so that one- 
dimensional thermal fields are believed to have been 

realized in the axial region of the specimens. The 
experimental apparatus and procedures used are 
described in detail in [IS]. 

The centre and the end surface temperatures of the 

samples have been recorded during each test and the 
centre temperatures have been assumed as tr(x,r). 

Then, with reference to the known initial and boundary 
conditionsand to the sample thicknesses, temperature- 

time curves have been computed using approximate 

and, when available, experimentally determined-values 
of the thermophysical properties. 

Experimental values of density have been used in all 
the computations since density can always be accu- 
rately measured at room temperatures, while the 

volume increase as a result of ice formation is about 
6 per cent for most biological materials [9]. 

The numerical method used in the calculations has 

been discussed elsewhere [4] and will not be treated 
again here. 

Only homogeneous and commercially available pro- 

ducts have been chosen for the experiments, in order 
not to introduce difficulties connected with handling 

and preparation of most biological materials. The first 
substance considered has been “Tylose”, a water and 

methylcellulose (77 per cent and 23 per cent in weight) 
mixture whose thermal properties are about the same 
as those of lean beef [15]. Thermal conductivity and 

specific heat of“Tylose”, which are plotted as unbroken 
lines in Fig. 1, are well known and, therefore, allow a 
comparison with the results obtained using approxi- 
mate data. The approximations of the experimental 

curves represented as dotted lines in Fig. 1 follow the 
fundamental rules previously reported and have proved 
to be satisfactory. However, different locations of the 

peak of heat capacity as well as different values of 

the width of the phase change interval have also been 
tried and have not led to significant changes in freezing 
and thawing times. 

Experimental and computed curves, typical of freez- 
ing tests on “Tylose”, are plotted in Fig. 2. As it can 
be seen, the agreement between measured and com- 

puted values is about 1 per cent of the total temperature 
change during the run if experimental values of thermal 
parameters are employed, while it is of the order of 

2 per cent if approximate values are used. 

I -8 1 
I 1 / I I 

I 6 -Y”“” Experimental --- 

/ 4-- Approxlmote -- 

I 2-- 
I o-- 

0 El-- 

0,6-- 

FIG. I. Thermophysical properties of “Tylose”. 
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FIG. 2. Freezing curve of a “Tylose” sample; FIG. 3. Thawing curve of a “Tylose” sample; 
~200~ = 1006 kg/m3, R = 0.0425 m. pz~sc = 1006 kg/m3, R = 0.0425 m. 

Results that are typical of thawing tests on “Tylose” be explained by allowing for the fact that thermo- 
are reported in Fig. 3. The difference between experi- physical property data at low temperatures are usually 
mental and computed centre temperature-time curves less accurate than at high temperatures, as it is certainly 
is of the order of 3 per cent, i.e. the temperature errors the case with approximate data, because of the un- 
are larger than in freezing runs. This worsening can certainties involved in the determination of tl. 

Table 1 

Food 
product 

Heat capacity 
(J/kW 

t > C” t < t, 

Thermal 
conductivity 

(W/n-W 
t > t, t < t, 

Density 
&s/m3) 

Latent heat 
of phase 

change (J/kg) 
f(C,) 
(“C) 

Hamburger 3100 2100 0.43 1.2 990 199 000 -6.5 -3.0 -1.0 
Mashed 
potatoes 3517 1842 0,498 2.003 1000 267 955 -7.0 -3.0 -1.0 

Table 2 

W) Hamburger Mashed potatoes 

5 x 10-3(s) 

Surface Centre 

Measured Measured Computed 

Surface Centre 
_____ 

Measured Measured Computed 

0 19.3 19.3 19.3 20.1 20.1 20.1 
0.24 10.1 18.8 19.3 10.2 19.8 20.0 
0.72 -2.8 16.3 16.7 - 1.9 16.1 16.9 
1.20 -7.9 11.0 11.0 -5.3 10.0 10.9 
1.68 - 12.2 5.4 5.3 -8.6 4.9 5.3 
2.16 - 15.2 0.8 0.7 -11.4 1.0 0.8 
264 -17.5 -2.1 -1.0 - 13.8 -0.5 - 1.3 
3.12 - 19.7 - 2.4 -1.2 -15.9 - 1.6 - 1.8 
3.60 -21.6 - 3.7 - 1.8 - 18.1 -3.9 -2.6 
4.08 - 22.7 -9.5 -9.7 -203 - 8.4 -4.2 
4.56 - 25.8 - 19.7 - 20.8 -248 - 20.0 -21.7 
5.04 - 29.5 - 26.9 - 26.0 -299 - 26.9 - 27.5 
5.52 - 33.2 -31.1 -30.1 - 32.8 -31.6 -31.6 
6.00 - 35.2 -33.6 - 33.3 -35.3 - 34.2 - 34.3 
6.48 - 37.1 - 36.2 - 35.5 - 37.2 - 36.8 - 36.4 

HMT Vol. 17. No. 8-E 
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Hamburger paste and mashed potatoes are the other 
substances used in the experiments. The available 
information on these materials is by no means com- 

plete. Thus, for the hamburger paste, a weighted mean 

has been utilized between data for lean beef [2, 12,141 
and those for fat [9], the fat content being about 
15 per cent. For mashed potatoes instead, the formulae 

suggested in [2] for the evaluation of specific heat, 
thermal conductivity and latent heat when only the 

water percentage is known have been used, the water 
content being about 80 per cent in this case. 

InTable the temperature values determined experi- 

mentally are compared with the results of computations 

made on the basis of the approximate values of thermal 

parameters obtained as previously outlined and re- 

ported in Table 1. 

The accuracy reached in all the runs using the 

approximating technique proposed in this paper is 

surprisingly good. 

CONCLUSIONS 

The approximating technique described in this paper 
has enabled to compute temperature distributions in 
biological materials when only as few as four local 
thermophysical property values-heat capacities and 

thermal conductivities above and below the phase 
change interval-and the latent heat effect are known. 

It has been shown that the method proposed here 
has a sound theoretical basis and it leads, in the 

calculations of thermal fields, to results which are well 
within the limits of accuracy usually imposed for 
thermal design. 
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SUR L’ESTIMATION DES PROPRIETES THERMOPHYSIQUES 
DANS LES PROBLEMES NON LINEAIRES DE CONDUCTION THERMIQUE 

R&urn&On ttudie l’influence des variations des propriCtCs thermophysiques sur les champs resultants 
de tempkrature en considkrant les probltmes non 1inCaires de conduction thermique. Les calculs et les 
exptriences montrent que dans les distributions de tem$rature, les erreurs apportCes par une estimation 
inexacte des propriCt&s thermiques sont faibles si les chaleurs spkcifiques approchtes (mbme pour des 
diffkrences locales grandes par rapport aux diffbrences rielles dans un petit domaine de tempkrature). 
respectent les variations d’enthalpie et si est petite l’inttgrale, Ctendue 6 l’intervalle de tempirature 
concern& de la valeur absolue de la difftrence entre les ConductivitCs approchte et rkelle. L’application 
pratique de ces rtsultats est faite au cas du gel ou du d&gel des mattriaux biologiques dont les coefficients 
thermiques varient tris rapidement dans la zone de changement de phase, zone oti l’on ne peut mesurer 

aisCment que les valeurs moyennes des propriCtts thermophysiques. 

ZUR ABSCHATZUNG THERMOPHYSIKALISCHER EIGENSCHAFTEN 
BEI NICHTLINEAREN WitRMELEITPROBLEMEN 

Zlsammenfaswng-Der EinfluD von vertiderlichen Stoffwerten auf das Temperaturfeld wird fiir quasi- 
lineare WIrmeleitprobleme untersucht. Sowohl theoretisch als such experimentell wird nachgewiesen. da8 
die durch engenaue Schltzung der thermischen Eigenschaften entstehenden Fehler bei der Berechnung 
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der Temperaturverteilung klein bleiben, wenn annahemd richtig geschatzte, spezifische Wkmen, die 
innerhalb eines kleinen Temperaturbereiches gegentiber den tatsachlichen Werten groC?e Abweichungen 
aufweisen diirfen, eingesetzt, die Enthalpieanderungen niedrig gehalten und wenn das Integral des 
absoluten Fehlers der Wlrmeleitfahigkeit iiber den gesamten Bereich des maDgebenden Temperaturgefalles 
klein bleibt. Die praktische Bedeutung dieser Ergebnisse fur den Gefrier- und Auftauvorgang von 
biologischen Substanzen wird erllutert. Deren thermische Parameter lndern sich im Gebiet der 

Phasenumwandlung stark, und nur Mittelwerte konnen hier leicht gemessen werden. 

OB OL(EHKE TElTJIO@I4311YECKWX XAPAKTEPMCTMK B HEJMHE~HMX 
3AAAYAX TEl-IJIOITPOBO~HOCT~ 

zhlOTZI~lUi - MCCJIenyeTCK BJIHRIiHe U3MeHeHUII TelTJIO@H3SiWKHX XapaKTepHCTHK Ha p‘Z3yJIbTSipy- 

KlIIJliC TeMIIepaTypHbIe IIOJIR B lTpEiMeHeHSiH K KBa3HJIKHeitHbIM 3aAaYaM TeILJIOllpOBOAHOCTH. Teope- 
TW’IeCKU W 3KCllepHMeHTiUIbHO llOATBepW%TCX, ‘iT0 OlIIU6KH IIpU pameTe paCrfpeAeJIeHHx TeMIlepa- 

TypbI, BbI3BaHHbIe HeTOqHOi OUeHKOti TeIIJIOBbIX XapaKTepHCTHK, He3HaWTefibHb1, eCJIH npn6nuwteH- 

Hble 3Ha’IeHWII TeIIJIOeMKOCTeit, J&UKe B CJI)“Iae 6onbmex H3MeHeHHfi JIOKaJIbHbIX 3Ha’ieHUti 

OTHOCHTeJIbHO TOgHbIX 3HaYeHHZi TeIUIOeMKOCTU B He6OJIbmOM AEiaIIa30He TeMIlepaTyp, COXpaHfflOT 

H3MeHeHHX 3HTaJIblTHU, H eCJIFi EiHTerpaJI OT a6COJImTHOrO 3HaYeHUR pa3HOCTH MeXiKny npn6nmKew 

HbIM H TO’IHbIM 3HaqeHWeM TelVIOIIpOBOAH0CTI.i BO SC& o6nacTw HCCJIefQ’eMbIX TeMIIepaTyp HeBeJGiK. 

YKa3aHO IIpaKTHYeCKOe IIpUMeHeHlie 3THX pe3yJIbTaTOB B IIpHJIO)KeHtiH K IIpOUeCG4M 3aMep3aHHX U 

OTTaHBaHBII 6uonorurecKax MaTepHaJIOB, TeIIJIOBbIe K03@@iL@ieHTbI KOTOpbIX IP23KO H3MeHfflOTCR 31 

30HOti aa30BbIX IIpeBpaIIJeHEiii, me MOQ’T 6bITb JIerKO IIOJI)“IeHbI TOJIbKO CpeAHHe 3HaYeHHR Tel-UIO- 

&i3H4eCKHX CBOkTB. 


